Berm Method for Quantification of Infiltration at the Plot Scale in High Conductivity Soils
نویسندگان
چکیده
Measuring infiltration at the plot scale is difficult, especially for high hydraulic conductivity soils. At the plot scale, the infiltration rate is usually calculated by comparing surface runoff to rainfall. Direct measurement of infiltration beyond the point scale is typically limited to locations where land forming (e.g., infiltration pond) has been performed or fields with basin irrigation systems. The standard method for field measurement of point-scale infiltration is the double ring infiltrometer, which is limited in size (typically 30 cm diameter). In this research, a new method is proposed that uses a temporary berm constructed of a water-filled 15-cm diameter vinyl hose with the edges sealed to the soil using bentonite. The berm is capable of confining infiltration plot areas of various sizes (e.g., 1 × 1 and 3 × 3 m areas in this research). Water tanks with 0.8 and 4.9 m3 capacity were used to supply water to the plots by gravity flow. A constant head could be maintained within the plot using either an automatic float valve for lower infiltration rates or a manually operated gate valve for higher infiltration rates. Observation wells were installed outside the plots to monitor for water table rise and tracers that leached into the groundwater. Guidelines are provided for tank size and refilling frequency for conducting field experiments. The procedure was tested on soils ranging from silt loam to coarse gravel using 12 1 × 1 and 3 × 3 m plots at three alluvial floodplain sites. Measured infiltration rates ranged over two orders of magnitude (0.8–74 cm/h) and were typically greater than the estimated permeability of the limiting layer reported in soil surveys, suggesting the need for larger scale field measurements of infiltration rates.
منابع مشابه
Berm Method for Quantification of Infiltration and Leaching at the Plot Scale in High Conductivity Soils
Measuring infiltration and leaching at the plot scale is difficult, especially for high hydraulic conductivity soils. Infiltration rate has been indirectly calculated at the plot scale by comparing surface runoff to rainfall. Direct measurement of infiltration and leaching beyond the point scale is typically limited to locations where land forming has been performed, e.g. infiltration ponds and...
متن کاملHeterogeneity of Infiltration Rates in Alluvial Floodplains as Measured with a Berm Infiltration Technique
Hydrologic heterogeneities (e.g., macropores and gravel outcrops) in floodplains are hypothesized to play an integral role in impacting flow and leaching between the soil surface and shallow alluvial aquifers, which are intricately connected to streams. Infiltration is often assumed to be uniform, but this neglects the spatial variability common in anisotropic, heterogeneous alluvial floodplain...
متن کاملSelection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media
The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water. So, the averaging method applied to compute hydraul...
متن کاملImpact of Distillery Effluent and Salts on Hydraulic Conductivity of a Sandy Loam Soil
Irrigation with distillery effluent, besides influencing crop yield, may have considerable impact on physical properties of soil because of its high salt and organic carbon contents. This experimental study was conducted to evaluate the effect of distillery effluent on hydraulic conductivity of a sandy loam alluvial soil and compare the effect of inorganic salts of potassium (K) with that of di...
متن کاملMeasuring infiltration rate and hydraulic conductivity in a dry well in a thin overburden
IInfiltration rate and hydraulic conductivity are immensely important parameters for evaluating the hydrology of subsurface environments. Specifically, in disposal wells schemes and in artificial recharge plans both properties must be correctly assessed to better analyze the performance of these installations. In a new research, tanker water and rainfall runoff were injected into a 22.5 m deep ...
متن کامل